
KS3 Programming

Workbook

INTRODUCTION TO

BB4W
BBC BASIC for Windows

Name:

Class:

Resource created by Lin White
www.coinlea.co.uk

This resource may be photocopied for educational purposes

http://www.coinlea.co.uk/

Introducing BBC BASIC for Windows
BASIC is a programming language that is easy to learn. It provides a way to write

instructions that are simple for a human to understand and clear for the computer to

follow. BBC BASIC was first provided on the BBC computers in the 1980s, and was the first

programming language many children learned. This version, for Windows, is an up to date

version that is still easy to learn, while allowing you to do many powerful things with your

computer – and you’re the one giving the orders!

Open up the BB4W program. You should see this:

Your version might have (trial) written at the top or you might have the full version.

This looks very like a word processing program, except that what you type are

instructions for the computer.

Type in PRINT “hello world”

You will need to type it in exactly as you see it here – type the word PRINT all in capitals.

When you hit Enter to move to a new line, the program will colour code your writing.

Now click the play button on the toolbar.

Note: I’ve resized all my program windows – yours will probably be much bigger.

Writing a program
So far you have only written one instruction. Close down the window that appeared, to

get back to your BB4W window, and type in some more instructions.

The BB4W editor colours your code so that you can understand it more easily. Anything in

pink is a String, which means BASIC treats it as text and will print it exactly as it appears.

Anything that is in orange is a Keyword, which means it is a special word the computer

understands as an instruction. Keywords are usually in capitals so they are easy to see.

Click on File/Save as and save your code with the filename test.

Click on the Run button again to see all your code running.

Did it work? Congratulations, you’ve written your first BASIC program!

Problems? If your program didn’t run at all, check very carefully that you have typed it

correctly and followed all instructions.

Programming time 1!
Now that you can write your very own program, write a program to solve these problems.

Write down your answers. Can you explain what it does? Some are easy, some trickier.

Expression Result What does it do?

3+4

57-4

4*6

7/2

7MOD2

7DIV2

RND(10)

Hint: Write a print statement, then a comma, then the expression you want to calculate.

For example:

PRINT “3+4=”, 3+4

What is the difference in using a ; (semi colon) instead of a , (comma)?

Challenge:

Write more statements using /, MOD and DIV. Can you work out what they do? They are

all related.

Write more statements using RND(10) – can you work out what it does? Try it with

different numbers instead of 10, to see if you are right.

Problems?

It changes PRINT to
print

Under Options, make sure lowercase keywords isn’t ticked.
Having the keywords in capitals makes them stand out more.

Can I make the print
bigger?

Yes, go to Options, choose Set Font, take the tick out of Use
System Fixed Font and then you can choose from a range of
fonts and sizes. This will only affect your program listing, and
not the output.

Can I change the
colours?

Yes, but I recommend you stick with the standard colours until
you’re very confident, as they will help you spot errors in your
code.

My 0 looks funny! Some programming languages, and some progammers, display
their 0s with a line through, to show it’s a number and not the
letter O.

What’s the * for? Computers can’t tell the difference between x meaning times
(multiply) and x that’s a letter, so they need to use a different
symbol for multiply. They use the * instead.

Answers to Programming time 1

+ Adds the numbers

- Subtracts (takes away)

* Multiplies (times)

/ Divides – gives decimal part of answer as
well

DIV Gives just the whole part of the division
answer

MOD Gives just the remainder of the division
answer

RND(x) This will provide a random number
between 1 and x (like rolling an x-sided
dice). Very useful when writing games!

7/2=3.5 but you could also say 7/2 is 3 remainder 1.

7DIV2=3 7MOD2=1 (the remainder is 1)

Using variables
We can give a name to a value, so we can talk about it later. This is called a variable,

because the value stored can vary.

PRINT 3*5 doesn’t tell you what the numbers are for.

 shapelength=5

 shapewidth=3

 area=shapelength*shapewidth

 PRINT area

Now you can see that the numbers are the length and width of a shape and the answer is

the area. There’s more to type this way but if we want to work out the area of a different

size shape we can just change the numbers for shapelength and shapewidth and rerun

the program. You’ll see more reasons why a variable is useful later, but they are very

important!

Using a variable with a name is like getting a box, writing the name on the side and then

putting that number in the box. Next time the computer comes across the same name it

will find the box and look up the number in it to use.

Programming time 2!
Write the program above and alter it and run it each time to calculate the area of a shape

that is

1. length 3 and width 2

2. length 8 and width 5

3. length 445 and width 237

Write another program – it needs to calculate the total cost of items. You will need a

variable for the item cost and a variable for the quantity. The totalcost needs to be

itemcost*quantity.

Note: variable names can’t have spaces in them. You can either run words together –

totalcost – or use an underscore – total_cost – or make the first letter of the

second word a capital – totalCost. You also can’t have keywords at the start of your

variable, which is why I called mine things like shapelength rather than length. You

could just call them L and W, but in a long program you might forget what they mean.

Input in BASIC (numbers)
In order to write a useful program, we need to be able to ask the user questions. This

means we need to store their answers as well.

We can ask someone their age and store it as a variable called age like this:

INPUT “What is your age” ; age

This stores the number entered in a box labelled age.

We can then do things with age, like multiply it by 365 to find out your age in days.

ageInDays=age*365

PRINT “You are ”; ageInDays ; “ days old.”

Note: you do not have to add a question mark to the question.

You do need to add spaces in where needed.

Programming time 3!
1. Write a program to work out your age in hours (age*365*24).

The age 13 should produce 113880.

2. Write a program to ask for width and length and print out the area of a rectangle

(shapewidth*shapelength).

Width 5 and height 2 should produce area 10.

3. Write a program to ask for time and speed and work out the distance travelled

(time * speed).

Time 2 and speed 60 should produce distance 120.

Make sure that each time you choose a sensible name for your variables.

Be very careful with your

capitals and spelling with

variable names – how you do

it isn’t as important as doing

it the same way each time

you want to use it.

Input in BASIC (Text)
If you try your age program but put in a word instead of a number, BASIC will treat it as if

you typed in 0. This isn’t much good if we want to type in text!

So far our variables have all been numbers, but if we want to store text instead, we need

to put $ on the end of the variable name. This is to remind us and the computer that it’s

storing a String (text) instead of a number.

INPUT “What is your name” ; name$

PRINT “Hello “; name$

INPUT “What is your favourite food”; food$

PRINT “I like “; food$; “ too.”

Programming time 4!
Write your own program to respond to the user. Test your program on a partner, and

then help them test theirs.

Remember to put $ on the end of a variable if it is storing text. You can put % on the end

if it is storing an integer (a whole number) or not put anything special on the end.

Variable ends in $ Variable must contain text (can be numbers as
well)

Variable ends in % Variable must contain a whole number, no text

Variable has no special character
at the end

Value must be a number (no text) but can have
decimal places

Making choices in BASIC
We can tell the computer to check something and do something different if it is true or if

it is false, by using an IF statement.

IF name$=”Fred” THEN PRINT “I like that name.”

Note: You will need to use capitals and spelling exactly the same as you want them to

type in. If you are checking for “Fred” and they type in fred the computer will not match

the values!

We can use IF statements in the same way with numbers.

Note the way the code is laid out here, to make it easy to read.

IF age>=18 THEN

 PRINT “You are old enough to vote”

ELSE

 PRINT “Sorry, you are not old enough.”

ENDIF

PRINT “Goodbye”

>= means more than or equal to.

In maths we would write ≥

Start a new line after

THEN

Start a new line after

ELSE

put ENDIF at the end

of the actions affected

by the test

Programming time 5!
1. Copy out the text input program and get it working. Copying out programs is a

good way of learning how to sort out problems with code.

2. Develop the program to have a longer conversation with the computer. It should

ask questions and then answer differently according to the answers given. Test

your program out on a partner. Does it work?

Remember we use $ at the end of a variable that stores text.

3. Copy out the number input program and get it working.

4. Write a program to have the user input a price. You should then check whether

the price is less than 10. If it is, then print “You can afford it.”

Otherwise, print “It is too expensive.”

Remember we can just use the variable name with no $ at the end for numbers.

= is equal to

<> is not equal to

< is less than

> is more than

<= is less than or equal to

>= is more than or equal to

You can put one IF statement inside another, like this.

 INPUT "What is your number: "; number

 IF number>50 THEN

 PRINT "Too big"

 ELSE

 IF number < 10 THEN

 PRINT "Too small"

 ELSE

 PRINT "Just right"

 ENDIF

 ENDIF

Looping in BASIC –FOR loops
We can use a FOR loop to go through the same section of code more than once.

FOR I%=1 TO 4

 PRINT “hello”

NEXT I%

PRINT “Finished”

FOR I%=1 TO 10

 PRINT I%*5

NEXT I%

PRINT “Finished”

Programming time 6!
Write your own loop to print the 6 times table. Your printout should look like this:

1x6= 6

2X6= 12

3x6= 18

and so on.

I will only contain the numbers 1, 2, 3 and then 4, so

we can tell the program it will be an integer (whole

number) by putting % at the end.

When it reaches the line NEXT I% it will add 1 to I

and go back to the top of the loop.

If I is bigger than the top value (1-4) it will stop

looping and continue below the loop instead.

Looping in BASIC – REPEAT and WHILE loops
Sometimes we want to keep on doing something forever, or until something changes.

While it’s raining, we’ll play inside.

We’ll keep playing that song until we get bored of it.

We can do this in BASIC too. One use for this is to run a program over and over until the

user enters something to stop it. When the user enters anything other than N in response

to Another go? Y/N the code within the REPEAT section will repeat. When N is

entered the looping stops and the program continues.

A WHILE loop performs a test first. If the test is true, the code loops, but if it is false it

continues after the loop.

REPEAT loops always run at least once. WHILE loops will not run at all if the test at the

beginning is false.

Both will loop until the test is false – if the test is never false, it will loop forever!

Programming time 7!
1. Write a program to ask for a number and print out half the number, then ask if the

user wants to continue.

2. Write a program to ask what number the user wants to start with. The program

should multiply their number by 4, print it, multiply it by 4 again, print it again and

keep going while the number is less than 1000. If they type in a number that is

already bigger than 1000 the program will just print Finished instead of

looping.

